265 research outputs found

    Winds in the AGN environment : new perspectives from high resolution X-ray spectroscopy

    Get PDF
    In recent years, winds were recognized as an important ingredient in the AGN picture. Outflows of photoionized gas, which produce blueshifted absorption features detectable in the X-ray and in the UV band, are present in about 50% of Seyfert 1 galaxies. Combining observations at high spectral resolution with photoionization modeling techniques, the kinetics, and the ionization conditions of the outflowing gas can be diagnosed with high accuracy. In this thesis, we applied these methods to three cases of study, obtaining a variety of results. In the X-ray spectrum of the Seyfert 1 galaxy 1H 0419-577, we detected the absorption lines from a galactic scale outflow already observed in the UV. In the case of the prototypical type 1 AGN NGC 5548, we discovered a lowly-ionized, patchy wind located in the nuclear region. We show that the emergence of this obscuring wind have drastically changed the spectral appearance of the source in the soft X-ray and in the UV band. Finally, we characterized a photoionized gas outflow in 4C +74.26, which is one of the few radio-loud AGN in which signatures of photoionized gas could be detected.High Energy Astrophysic

    Chandra imaging of the \simkpc extended outflow in 1H 0419-577

    Get PDF
    The Seyfert 1 galaxy 1H 0419-577 hosts a \simkpc extended outflow that is evident in the [\ion{O}{iii}] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a \sim30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least \sim16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [\ion{O}{iii}] outflow. we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.Comment: accepted for publications A&

    Edge-weighting of gene expression graphs

    Get PDF
    In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed

    Simultaneous XMM-\textit{Newton} and HST-COS observation of 1H0419-577: II. Broadband spectral modeling of a variable Seyfert galaxy

    Full text link
    In this paper we present the longest exposure (97 ks) XMM-Newton EPIC-pn spectrum ever obtained for the Seyfert 1.5 galaxy 1H 0419-577. With the aim of explaining the broadband emission of this source, we took advantage of the simultaneous coverage in the optical/UV that was provided in the present case by the XMM-Newton Optical Monitor and by a HST-COS observation. Archival FUSE flux measurements in the FUV were also used for the present analysis. We successfully modeled the X-ray spectrum together with the optical/UV fluxes data points using a Comptonization model. We found that a blackbody temperature of T56T \sim 56 eV accounts for the optical/UV emission originating in the accretion disk. This temperature serves as input for the Comptonized components that model the X-ray continuum. Both a warm (Twc0.7T_{\rm wc} \sim 0.7 keV, τwc7\tau_{\rm wc} \sim 7 ) and a hot corona (Thc160T_{\rm hc} \sim 160 keV, τhc0.5\tau_{\rm hc} \sim 0.5) intervene to upscatter the disk photons to X-ray wavelengths. With the addition of a partially covering (Cv50%C_v\sim50\%) cold absorber with a variable opacity (NH[10191022]cm2 {\it N}_{\rm H}\sim [10^{19}- 10^{22}] \,\rm cm^{-2}), this model can well explain also the historical spectral variability of this source, with the present dataset presenting the lowest one (NH1019cm2{\it N}_{\rm H}\sim 10^{19} \, \rm cm^{-2} ). We discuss a scenario where the variable absorber, getting ionized in response to the variations of the X-ray continuum, becomes less opaque in the highest flux states. The lower limit for the absorber density derived in this scenario is typical for the broad line region clouds. Finally, we critically compare this scenario with all the different models (e.g. disk reflection) that have been used in the past to explain the variability of this sourceComment: 12 pages, 9 figure

    Anatomy of the AGN in NGC 5548: V. A clear view of the X-ray narrow emission lines

    Get PDF
    Context. Our consortium performed an extensive multi-wavelength campaign of the nearby Seyfert 1 galaxy NGC 5548 in 2013-14. The source appeared unusually heavily absorbed in the soft X-rays, and signatures of outflowing absorption were also present in the UV. He-like triplets of neon, oxygen and nitrogen, and radiative recombination continuum (RRC) features were found to dominate the soft X-ray spectrum due to the low continuum flux. Aims. Here we focus on characterising these narrow emission features using data obtained from the XMM-Newton RGS (770 ks stacked spectrum). Methods. We use SPEX for our initial analysis of these features. Self-consistent photoionisation models from Cloudy are then compared with the data to characterise the physical conditions of the emitting region. Results. Outflow velocity discrepancies within the O VII triplet lines can be explained if the X-ray narrow-line region (NLR) in NGC 5548 is absorbed by at least one of the six warm absorber components found by previous analyses. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (104\sim10^{4} K), favouring photoionised conditions. We fit the data with a Cloudy model of log ξ=1.45±0.05\xi = 1.45 \pm 0.05 erg cm s1^{-1}, log NH=22.9±0.4N_H = 22.9 \pm 0.4 cm2^{-2} and log vturb=2.25±0.5_{turb} = 2.25 \pm 0.5 km s1^{-1} for the emitting gas; this is the first time the X-ray NLR gas in this source has been modelled so comprehensively. This allows us to estimate the distance from the central source to the illuminated face of the emitting clouds as 13.9±0.613.9 \pm 0.6 pc, consistent with previous work.Comment: Accepted by A&A, 15 pages, 6 figure

    Sloshing cold fronts in galaxy groups and their perturbing disk galaxies: an X-ray, Optical and Radio Case Study

    Full text link
    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, literature multi-object spectroscopy data and GMRT data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is strong analogy of the X-ray and optical phenomenology of the IC 1860 group with two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment to study this phenomenon.Comment: 22 pages, 21 figures, accepted for publication in the Astrophysical Journa

    Anatomy of the AGN in NGC 5548: I. A global model for the broadband spectral energy distribution

    Get PDF
    An extensive multi-satellite campaign on NGC 5548 has revealed this archetypal Seyfert-1 galaxy to be in an exceptional state of persistent heavy absorption. Our observations taken in 2013-2014 with XMM-Newton, Swift, NuSTAR, INTEGRAL, Chandra, HST and two ground-based observatories have together enabled us to establish that this unexpected phenomenon is caused by an outflowing stream of weakly ionised gas (called the obscurer), extending from the vicinity of the accretion disk to the broad-line region. In this work we present the details of our campaign and the data obtained by all the observatories. We determine the spectral energy distribution of NGC 5548 from near-infrared to hard X-rays by establishing the contribution of various emission and absorption processes taking place along our line of sight towards the central engine. We thus uncover the intrinsic emission and produce a broadband continuum model for both obscured (average summer 2013 data) and unobscured (<< 2011) epochs of NGC 5548. Our results suggest that the intrinsic NIR/optical/UV continuum is a single Comptonised component with its higher energy tail creating the 'soft X-ray excess'. This component is compatible with emission from a warm, optically-thick corona as part of the inner accretion disk. We then investigate the effects of the continuum on the ionisation balance and thermal stability of photoionised gas for unobscured and obscured epochs.Comment: Accepted for publication in A&A, 19 pages, 13 figure
    corecore